Contact – +1-276-477-5910
 Email – [email protected]

Home >>

Telecom & IT

>>

SON Self-Organizing Networks in the G Era Opportunities Challenges Strategies Forecasts


SON (Self-Organizing Networks) in the 5G Era: 2019 – 2030 – Opportunities, Challenges, Strategies & Forecasts

Report code: SDMRTE45574 | Industry: Telecom & IT | Published On: 2020-01-01


The growing complexity of mobile networks and 5G NR (New Radio) infrastructure rollouts will drive SON (Self-Organizing Network) spending to $5.5 Billion by 2022.
SON technology minimizes the lifecycle cost of running a mobile network by eliminating manual configuration of network elements at the time of deployment, right through to dynamic optimization and troubleshooting during operation. Besides improving network performance and customer experience, SON can significantly reduce the cost of mobile operator services, improving the OpEx-to-revenue ratio and deferring avoidable CapEx.

To support their LTE and HetNet deployments, early adopters of SON have already witnessed a spate of benefits – in the form of accelerated rollout times, simplified network upgrades, fewer dropped calls, improved call setup success rates, higher end-user throughput, alleviation of congestion during special events, increased subscriber satisfaction and loyalty, and operational efficiencies – such as energy and cost savings, and freeing up radio engineers from repetitive manual tasks.

Although SON was originally developed as an operational approach to streamline cellular RAN (Radio Access Network) deployment and optimization, mobile operators and vendors are increasingly focusing on integrating new capabilities such as self-protection against digital security threats, and self-learning through artificial intelligence techniques, as well as extending the scope of SON beyond the RAN to include both mobile core and transport network segments – which will be critical to address 5G requirements such as end-to-end network slicing. In addition, dedicated SON solutions for Wi-Fi and other access technologies have also emerged, to simplify wireless networking in home and enterprise environments.

Largely driven by the increasing complexity of today's multi-RAN mobile networks – including network densification and spectrum heterogeneity, as well as 5G NR infrastructure rollouts, global investments in SON technology are expected to grow at a CAGR of approximately 11% between 2019 and 2022. By the end of 2022, the SON will account for a market worth $5.5 Billion.

The “SON (Self-Organizing Networks) in the 5G Era: 2019 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of the SON and associated mobile network optimization ecosystem, including market drivers, challenges, enabling technologies, functional areas, use cases, key trends, standardization, regulatory landscape, mobile operator case studies, opportunities, future roadmap, value chain, ecosystem player profiles and strategies. The report also presents revenue forecasts for both SON and conventional mobile network optimization, along with individual projections for 10 SON submarkets, and 6 regions from 2019 till 2030.

Table  of  Contents  
1  Chapter  1:  Introduction
1.1  Executive  Summary
1.2  Topics  Covered
1.3  Forecast  Segmentation
1.4  Key  Questions  Answered
1.5  Key  Findings
1.6  Methodology
1.7  Target  Audience
1.8  Companies  &  Organizations  Mentioned
  
2  Chapter  2:  SON  &  Mobile  Network  Optimization  Ecosystem
2.1  Conventional  Mobile  Network  Optimization
2.1.1  Network  Planning
2.1.2  Measurement  Collection:  Drive  Tests,  Probes  and  End  User  Data
2.1.3  Post-Processing,  Optimization  &  Policy  Enforcement
2.2  The  SON  (Self-Organizing  Network)  Concept
2.2.1  What  is  SON?
2.2.2  The  Need  for  SON
2.3  Functional  Areas  of  SON
2.3.1  Self-Configuration
2.3.2  Self-Optimization
2.3.3  Self-Healing
2.3.4  Self-Protection
2.3.5  Self-Learning
2.4  Market  Drivers  for  SON  Adoption
2.4.1  The  5G  Era:  Continued  Mobile  Network  Infrastructure  Investments
2.4.2  Optimization  in  Multi-RAN  &  HetNet  Environments
2.4.3  OpEx  &  CapEx  Reduction:  The  Cost  Savings  Potential
2.4.4  Improving  Subscriber  Experience  and  Churn  Reduction
2.4.5  Power  Savings:  Towards  Green  Mobile  Networks
2.4.6  Alleviating  Congestion  with  Traffic  Management
2.4.7  Enabling  Large-Scale  Small  Cell  Rollouts
2.4.8  Growing  Adoption  of  Private  LTE  &  5G-Ready  Networks
2.5  Market  Barriers  for  SON  Adoption
2.5.1  Complexity  of  Implementation
2.5.2  Reorganization  &  Changes  to  Standard  Engineering  Procedures
2.5.3  Lack  of  Trust  in  Automation
2.5.4  Proprietary  SON  Algorithms
2.5.5  Coordination  Between  Distributed  and  Centralized  SON
2.5.6  Network  Security  Concerns:  New  Interfaces  and  Lack  of  Monitoring
  
3  Chapter  3:  SON  Technology,  Use  Cases  &  Implementation  Architectures
3.1  Where  Does  SON  Sit  Within  a  Mobile  Network?
3.1.1  RAN
3.1.2  Mobile  Core
3.1.3  Transport  (Backhaul  &  Fronthaul)
3.1.4  Device-Assisted  SON
3.2  SON  Architecture
3.2.1  C-SON  (Centralized  SON)
3.2.2  D-SON  (Distributed  SON)
3.2.3  H-SON  (Hybrid  SON)
3.3  SON  Use-Cases
3.3.1  Self-Configuration  of  Network  Elements
3.3.2  Automatic  Connectivity  Management
3.3.3  Self-Testing  of  Network  Elements
3.3.4  Self-Recovery  of  Network  Elements/Software
3.3.5  Self-Healing  of  Board  Faults
3.3.6  Automatic  Inventory
3.3.7  ANR  (Automatic  Neighbor  Relations)
3.3.8  PCI  (Physical  Cell  ID)  Configuration
3.3.9  CCO  (Coverage  &  Capacity  Optimization)
3.3.10  MRO  (Mobility  Robustness  Optimization)
3.3.11  MLB  (Mobility  Load  Balancing)
3.3.12  RACH  (Random  Access  Channel)  Optimization
3.3.13  ICIC  (Inter-Cell  Interference  Coordination)
3.3.14  eICIC  (Enhanced  ICIC)
3.3.15  Energy  Savings
3.3.16  COD/COC  (Cell  Outage  Detection  &  Compensation)
3.3.17  MDT  (Minimization  of  Drive  Tests)
3.3.18  AAS  (Adaptive  Antenna  Systems)  &  Massive  MIMO
3.3.19  Millimeter  Wave  Links  in  5G  NR  (New  Radio)  Networks
3.3.20  Self-Configuration  &  Optimization  of  Small  Cells
3.3.21  Optimization  of  DAS  (Distributed  Antenna  Systems)
3.3.22  RAN  Aware  Traffic  Shaping
3.3.23  Traffic  Steering  in  HetNets
3.3.24  Optimization  of  NFV-Based  Networking
3.3.25  Auto-Provisioning  of  Transport  Links
3.3.26  Transport  Network  Bandwidth  Optimization
3.3.27  Transport  Network  Interference  Management
3.3.28  Self-Protection
3.3.29  SON  Coordination  Management
3.3.30  Seamless  Vendor  Infrastructure  Swap
3.3.31  Dynamic  Spectrum  Management  &  Allocation
3.3.32  Network  Slice  Optimization
3.3.33  Cognitive  &  Self-Learning  Networks
  
4  Chapter  4:  Key  Trends  in  Next-Generation  LTE  &  5G  SON  Implementations
4.1  Big  Data  &  Advanced  Analytics
4.1.1  Maximizing  the  Benefits  of  SON  with  Big  Data
4.1.2  The  Importance  of  Predictive  &  Behavioral  Analytics
4.2  Artificial  Intelligence  &  Machine  Learning
4.2.1  Towards  Self-Learning  SON  Engines  with  Machine  Learning
4.2.2  Deep  Learning:  Enabling  "Zero-Touch"  Mobile  Networks
4.3  NFV  (Network  Functions  Virtualization)
4.3.1  Enabling  the  SON-Driven  Deployment  of  VNFs  (Virtualized  Network  Functions)
4.4  SDN  (Software  Defined  Networking)  &  Programmability
4.4.1  Using  the  SDN  Controller  as  a  Platform  for  SON  in  Transport  Networks
4.5  Cloud  Computing
4.5.1  Facilitating  C-SON  Scalability  &  Elasticity
4.6  Small  Cells,  HetNets  &  RAN  Densification
4.6.1  Plug  &  Play  Small  Cells
4.6.2  Coordinating  UDNs  (Ultra  Dense  Networks)  with  SON
4.7  C-RAN  (Centralized  RAN)  &  Cloud  RAN
4.7.1  Efficient  Resource  Utilization  in  C-RAN  Deployments  with  SON
4.8  Unlicensed  &  Shared  Spectrum  Usage
4.8.1  Dynamic  Management  of  Spectrum  with  SON
4.9  MEC  (Multi-Access  Edge  Computing)
4.9.1  Potential  Synergies  with  SON
4.10  Network  Slicing
4.10.1  Use  of  SON  Mechanisms  for  Network  Slicing  in  5G  Networks
4.11  Other  Trends  &  Complementary  Technologies
4.11.1  Alternative  Carrier/Private  LTE  &  5G-Ready  Networks
4.11.2  FWA  (Fixed  Wireless  Access)
4.11.3  DPI  (Deep  Packet  Inspection)
4.11.4  Digital  Security  for  Self-Protection
4.11.5  SON  Capabilities  for  IoT  Applications
4.11.6  User-Based  Profiling  &  Optimization  for  Vertical  5G  Applications
4.11.7  Addressing  D2D  (Device-to-Device)  Communications  &  New  Use  Cases
  
5  Chapter  5:  Standardization,  Regulatory  &  Collaborative  Initiatives
5.1  3GPP  (Third  Generation  Partnership  Project)
5.1.1  Standardization  of  SON  Capabilities  for  3GPP  Networks
5.1.2  Release  8
5.1.3  Release  9
5.1.4  Release  10
5.1.5  Release  11
5.1.6  Release  12
5.1.7  Releases  13  &  14
5.1.8  Releases  15,  16  &  Beyond
5.1.9  Implementation  Approach  for  3GPP-Specified  SON  Features
5.2  NGMN  Alliance
5.2.1  Conception  of  the  SON  Initiative
5.2.2  Functional  Areas  and  Requirements
5.2.3  Implementation  Approach:  Focus  on  H-SON
5.2.4  Recommendations  for  Multi-Vendor  SON  Deployment
5.2.5  SON  Capabilities  for  5G  Network  Deployment,  Operation  &  Management
5.3  ETSI  (European  Telecommunications  Standards  Institute)
5.3.1  ENI  ISG  (Experiential  Networked  Intelligence  Industry  Specification  Group)
5.4  Linux  Foundation's  ONAP  (Open  Network  Automation  Platform)
5.4.1  ONAP  Support  for  SON  in  5G  Networks
5.5  OSSii  (Operations  Support  Systems  Interoperability  Initiative)
5.5.1  Enabling  Multi-Vendor  SON  Interoperability
5.6  Small  Cell  Forum
5.6.1  Release  7:  Focus  on  SON  for  Small  Cells
5.6.2  SON  API
5.6.3  X2  Interoperability
5.7  WBA  (Wireless  Broadband  Alliance)
5.7.1  SON  Integration  in  Carrier  Wi-Fi  Guidelines
5.8  CableLabs
5.8.1  Wi-Fi  RRM  (Radio  Resource  Management)/SON
5.9  5G  PPP  (5G  Infrastructure  Public  Private  Partnership)  &  European  Union  Projects
5.9.1  SELFNET  (Framework  for  Self-Organized  Network  Management  in  Virtualized  and  Software  Defined  Networks)
5.9.2  SEMAFOUR  (Self-Management  for  Unified  Heterogeneous  Radio  Access  Networks)
5.9.3  SOCRATES  (Self-Optimization  and  Self-Configuration  in  Wireless  Networks)
5.9.4  COGNET  (Building  an  Intelligent  System  of  Insights  and  Action  for  5G  Network  Management)
  
6  Chapter  6:  SON  Deployment  Case  Studies
6.1  AT&T
6.1.1  Vendor  Selection
6.1.2  SON  Deployment  Review
6.1.3  Results  &  Future  Plans
6.2  BCE  (Bell  Canada)
6.2.1  Vendor  Selection
6.2.2  SON  Deployment  Review
6.2.3  Results  &  Future  Plans
6.3  Bharti  Airtel
6.3.1  Vendor  Selection
6.3.2  SON  Deployment  Review
6.3.3  Results  &  Future  Plans
6.4  Elisa
6.4.1  Vendor  Selection
6.4.2  SON  Deployment  Review
6.4.3  Results  &  Future  Plans
6.5  Globe  Telecom
6.5.1  Vendor  Selection
6.5.2  SON  Deployment  Review
6.5.3  Results  &  Future  Plans
6.6  KDDI  Corporation
6.6.1  Vendor  Selection
6.6.2  SON  Deployment  Review
6.6.3  Results  &  Future  Plans
6.7  MegaFon
6.7.1  Vendor  Selection
6.7.2  SON  Deployment  Review
6.7.3  Results  &  Future  Plans
6.8  Orange
6.8.1  Vendor  Selection
6.8.2  SON  Deployment  Review
6.8.3  Results  &  Future  Plans
6.9  Singtel
6.9.1  Vendor  Selection
6.9.2  SON  Deployment  Review
6.9.3  Results  &  Future  Plans
6.10  SK  Telecom
6.10.1  Vendor  Selection
6.10.2  SON  Deployment  Review
6.10.3  Results  &  Future  Plans
6.11  Telefónica  Group
6.11.1  Vendor  Selection
6.11.2  SON  Deployment  Review
6.11.3  Results  &  Future  Plans
6.12  TIM  (Telecom  Italia  Mobile)
6.12.1  Vendor  Selection
6.12.2  SON  Deployment  Review
6.12.3  Results  &  Future  Plans
6.13  Turkcell
6.13.1  Vendor  Selection
6.13.2  SON  Deployment  Review
6.13.3  Results  &  Future  Plans
6.14  Verizon  Communications
6.14.1  Vendor  Selection
6.14.2  SON  Deployment  Review
6.14.3  Results  &  Future  Plans
6.15  Vodafone  Group
6.15.1  Vendor  Selection
6.15.2  SON  Deployment  Review
6.15.3  Results  &  Future  Plans
  
7  Chapter  7:  Future  Roadmap  &  Value  Chain
7.1  Future  Roadmap
7.1.1  Pre-2020:  Addressing  Customer  QoE,  Network  Densification  &  Early  5G  Rollouts
7.1.2  2020  –  2025:  Towards  Advanced  Machine  Learning  Based  SON  Implementations
7.1.3  2025  –  2030:  Enabling  Near  Zero-Touch  &  Automated  5G  Networks
7.2  Value  Chain
7.3  Embedded  Technology  Ecosystem
7.3.1  Chipset  Developers
7.3.2  Embedded  Component/Software  Providers
7.4  RAN  Ecosystem
7.4.1  Macrocell  RAN  OEMs
7.4.2  Pure-Play  Small  Cell  OEMs
7.4.3  Wi-Fi  Access  Point  OEMs
7.4.4  DAS  &  Repeater  Solution  Providers
7.4.5  C-RAN  Solution  Providers
7.4.6  Other  Technology  Providers
7.5  Transport  Networking  Ecosystem
7.5.1  Backhaul  &  Fronthaul  Solution  Providers
7.6  Mobile  Core  Ecosystem
7.6.1  Mobile  Core  Solution  Providers
7.7  Connectivity  Ecosystem
7.7.1  Mobile  Operators
7.7.2  Wi-Fi  Connectivity  Providers
7.7.3  SCaaS  (Small-Cells-as-a-Service)  Providers
7.8  SON  Ecosystem
7.8.1  SON  Solution  Providers
7.9  SDN  &  NFV  Ecosystem
7.9.1  SDN  &  NFV  Providers
7.10  MEC  Ecosystem
7.10.1  MEC  Specialists
  
8  Chapter  8:  Key  Ecosystem  Players
8.1  Accedian  Networks
8.2  Accelleran
8.3  AirHop  Communications
8.4  Airspan  Networks
8.5  Allot  Communications
8.6  Alpha  Networks
8.7  Altiostar  Networks
8.8  Altran/Aricent
8.9  Alvarion  Technologies/SuperCom
8.10  Amdocs
8.11  Anritsu  Corporation
8.12  Arcadyan  Technology  Corporation
8.13  Argela/Netsia
8.14  Artemis  Networks
8.15  Artiza  Networks
8.16  ASOCS
8.17  ASUS  (ASUSTeK  Computer)
8.18  ATDI
8.19  Baicells  Technologies
8.20  Benu  Networks
8.21  BoostEdge
8.22  Broadcom
8.23  Casa  Systems
8.24  CBNL  (Cambridge  Broadband  Networks  Limited)
8.25  CCI  (Communication  Components,  Inc.)/BLiNQ  Networks
8.26  CCS  (Cambridge  Communication  Systems)
8.27  CellOnyx
8.28  Cellwize
8.29  CelPlan  Technologies
8.30  Celtro
8.31  Cisco  Systems
8.32  Citrix  Systems
8.33  Collision  Communications
8.34  Comarch
8.35  CommAgility
8.36  CommScope
8.37  CommProve
8.38  Contela
8.39  Continual
8.40  Coriant
8.41  Corning/SpiderCloud  Wireless
8.42  Datang  Mobile
8.43  Dell  Technologies
8.44  Digitata
8.45  D-Link  Corporation
8.46  ECE  (European  Communications  Engineering)
8.47  EDX  Wireless
8.48  Elisa  Automate
8.49  Empirix
8.50  Equiendo
8.51  Ercom
8.52  Ericsson
8.53  ETRI  (Electronics  &  Telecommunications  Research  Institute,  South  Korea)
8.54  EXFO/Astellia
8.55  Facebook
8.56  Fairspectrum
8.57  Federated  Wireless
8.58  Flash  Networks
8.59  Forsk
8.60  Fujian  Sunnada  Network  Technology
8.61  Fujitsu
8.62  Galgus
8.63  Gemtek  Technology
8.64  General  Dynamics  Mission  Systems
8.65  GenXComm
8.66  GoNet  Systems
8.67  Google/Alphabet
8.68  Guavus/Thales
8.69  GWT  (Global  Wireless  Technologies)
8.70  HCL  Technologies
8.71  Hitachi
8.72  Huawei
8.73  iBwave  Solutions
8.74  InfoVista
8.75  Innovile
8.76  InnoWireless/Qucell/Accuver
8.77  Intel  Corporation
8.78  InterDigital
8.79  Intracom  Telecom
8.80  ip.access
8.81  ITRI  (Industrial  Technology  Research  Institute,  Taiwan)
8.82  JRC  (Japan  Radio  Company)
8.83  Juni  Global
8.84  Juniper  Networks
8.85  Keima
8.86  Key  Bridge
8.87  Keysight  Technologies/Ixia
8.88  Kleos
8.89  Koonsys  Radiocommunications
8.90  Kumu  Networks
8.91  Lemko  Corporation
8.92  Linksys
8.93  LS  telcom
8.94  Luminate  Wireless
8.95  LuxCarta
8.96  Marvell  Technology  Group/Cavium
8.97  Mavenir  Systems
8.98  Mimosa  Networks
8.99  MitraStar  Technology  Corporation
8.100  Mojo  Networks/Arista  Networks
8.101  Mosaik
8.102  Nash  Technologies
8.103  NEC  Corporation
8.104  NetScout  Systems
8.105  New  Postcom  Equipment  Company
8.106  Node-H
8.107  Nokia  Networks
8.108  Nomor  Research
8.109  NuRAN  Wireless/Nutaq  Innovation
8.110  NXP  Semiconductors
8.111  Oceus  Networks
8.112  P.I.Works
8.113  Parallel  Wireless
8.114  Persistent  Systems
8.115  PHAZR
8.116  Phluido
8.117  Polystar
8.118  Potevio
8.119  Qualcomm
8.120  Quanta  Computer
8.121  RADCOM
8.122  Radisys  Corporation/Reliance  Industries
8.123  Ranplan  Wireless  Network  Design
8.124  RED  Technologies
8.125  Redline  Communications
8.126  Rivada  Networks
8.127  Rohde  &  Schwarz
8.128  Ruckus  Wireless/ARRIS  International
8.129  Saguna  Networks
8.130  Samji  Electronics  Company
8.131  Samsung
8.132  SEDICOM
8.133  SerComm  Corporation
8.134  Seven  Networks
8.135  Siklu  Communication
8.136  SIRADEL
8.137  SITRONICS
8.138  SK  Telesys
8.139  Spectrum  Effect
8.140  Star  Solutions
8.141  Systemics  Group
8.142  Tarana  Wireless
8.143  Tech  Mahindra
8.144  Tecore  Networks
8.145  TEKTELIC  Communications
8.146  Telrad  Networks
8.147  TEOCO  Corporation
8.148  Teragence
8.149  TI  (Texas  Instruments)
8.150  TP-Link  Technologies
8.151  TTG  International
8.152  Tulinx
8.153  Vasona  Networks
8.154  Viavi  Solutions
8.155  VMWare
8.156  WebRadar
8.157  Wireless  DNA
8.158  WNC  (Wistron  NeWeb  Corporation)
8.159  WPOTECH
8.160  XCellAir/Fontech
8.161  Z-Com
8.162  ZTE
8.163  Zyxel  Communications  Corporation
  
9  Chapter  9:  Market  Sizing  &  Forecasts
9.1  SON  &  Mobile  Network  Optimization  Revenue
9.2  SON  Revenue
9.3  SON  Revenue  by  Network  Segment
9.3.1  RAN
9.3.2  Mobile  Core
9.3.3  Transport  (Backhaul  &  Fronthaul)
9.4  SON  Revenue  by  Architecture:  Centralized  vs.  Distributed
9.4.1  C-SON
9.4.2  D-SON
9.5  SON  Revenue  by  Access  Network  Technology
9.5.1  2G  &  3G
9.5.2  LTE
9.5.3  5G
9.5.4  Wi-Fi
9.6  SON  Revenue  by  Region
9.7  Conventional  Mobile  Network  Planning  &  Optimization  Revenue
9.8  Conventional  Mobile  Network  Planning  &  Optimization  Revenue  by  Region
9.9  Asia  Pacific
9.9.1  SON
9.9.2  Conventional  Mobile  Network  Planning  &  Optimization
9.10  Eastern  Europe
9.10.1  SON
9.10.2  Conventional  Mobile  Network  Planning  &  Optimization
9.11  Latin  &  Central  America
9.11.1  SON
9.11.2  Conventional  Mobile  Network  Planning  &  Optimization
9.12  Middle  East  &  Africa
9.12.1  SON
9.12.2  Conventional  Mobile  Network  Planning  &  Optimization
9.13  North  America
9.13.1  SON
9.13.2  Conventional  Mobile  Network  Planning  &  Optimization
9.14  Western  Europe
9.14.1  SON
9.14.2  Conventional  Mobile  Network  Planning  &  Optimization
  
10  Chapter  10:  Conclusion  &  Strategic  Recommendations
10.1  Why  is  the  Market  Poised  to  Grow?
10.2  Competitive  Industry  Landscape:  Acquisitions,  Alliances  &  Consolidation
10.3  Evaluating  the  Practical  Benefits  of  SON
10.4  End-to-End  SON:  Moving  Towards  Mobile  Core  and  Transport  Networks
10.5  Growing  Adoption  of  SON  Capabilities  for  Wi-Fi
10.6  The  Importance  of  Artificial  Intelligence  &  Machine  Learning
10.7  QoE-Based  SON  Platforms:  Optimizing  End  User  Experience
10.8  Enabling  Network  Slicing  &  Advanced  Capabilities  for  5G  Networks
10.9  Greater  Focus  on  Self-Protection  Capabilities
10.10  Addressing  IoT  Optimization
10.11  Managing  Unlicensed  &  Shared  Spectrum
10.12  Easing  the  Deployment  of  Private  &  Enterprise  LTE/5G-Ready  Networks
10.13  Assessing  the  Impact  of  SON  on  Optimization  &  Field  Engineers
10.14  SON  Associated  OpEx  Savings:  The  Numbers
10.15  The  C-SON  Versus  D-SON  Debate
10.16  Strategic  Recommendations
10.16.1  SON  Solution  Providers
10.16.2  Mobile  Operators
  
List  of  Figures  
  Figure  1:  Functional  Areas  of  SON  within  the  Mobile  Network  Lifecycle
  Figure  2:  Annual  Throughput  of  Mobile  Network  Data  Traffic  by  Region:  2019  –  2030  (Exabytes)
  Figure  3:  Global  Wireless  Network  Infrastructure  Revenue  Share  by  Submarket  (%)
  Figure  4:  SON  Associated  OpEx  &  CapEx  Savings  by  Network  Segment  (%)
  Figure  5:  Potential  Areas  of  SON  Implementation
  Figure  6:  Mobile  Backhaul  &  Fronthaul  Technologies
  Figure  7:  C-SON  (Centralized  SON)  in  a  Mobile  Operator  Network
  Figure  8:  D-SON  (Distributed  SON)  in  a  Mobile  Operator  Network
  Figure  9:  H-SON  (Hybrid  SON)  in  a  Mobile  Operator  Network
  Figure  10:  NFV  Concept
  Figure  11:  Transition  to  UDNs  (Ultra-Dense  Networks)
  Figure  12:  C-RAN  Architecture
  Figure  13:  Conceptual  Architecture  for  End-to-End  Network  Slicing  in  Mobile  Networks
  Figure  14:  Comparison  Between  DPI  &  Shallow  Packet  Inspection
  Figure  15:  NGNM  SON  Use  Cases
  Figure  16:  SELFNET's  SON  Implementation  Framework
  Figure  17:  AT&T's  SON  Implementation
  Figure  18:  Elisa's  In-House  SON  Solution
  Figure  19:  KDDI's  Artificial  Intelligence-Assisted  Automated  Network  Operation  System
  Figure  20:  Orange's  Vision  for  Cognitive  PBSM  (Policy  Based  SON  Management)
  Figure  21:  SK  Telecom's  Fast  Data  Platform  for  QoE-Based  Automatic  Network  Optimization
  Figure  22:  Telefónica's  SON  Deployment  Roadmap  From  4G  To  5G  Rollouts
  Figure  23:  TIM's  Open  SON  Architecture
  Figure  24:  SON  Future  Roadmap:  2019  –  2030
  Figure  25:  Wireless  Network  Infrastructure  Value  Chain
  Figure  26:  Global  SON  &  Mobile  Network  Optimization  Revenue:  2019  –  2030  ($  Million)
  Figure  27:  Global  SON  Revenue:  2019  –  2030  ($  Million)
  Figure  28:  Global  SON  Revenue  by  Network  Segment:  2019  –  2030  ($  Million)
  Figure  29:  Global  SON  Revenue  in  the  RAN  Segment:  2019  –  2030  ($  Million)
  Figure  30:  Global  SON  Revenue  in  the  Mobile  Core  Segment:  2019  –  2030  ($  Million)
  Figure  31:  Global  SON  Revenue  in  the  Transport  (Backhaul  &  Fronthaul)  Segment:  2019  –  2030  ($  Million)
  Figure  32:  Global  SON  Revenue  by  Architecture:  2019  –  2030  ($  Million)
  Figure  33:  Global  C-SON  Revenue:  2019  –  2030  ($  Million)
  Figure  34:  Global  D-SON  Revenue:  2019  –  2030  ($  Million)
  Figure  35:  Global  SON  Revenue  by  Access  Network  Technology:  2019  –  2030  ($  Million)
  Figure  36:  Global  2G  &  3G  SON  Revenue:  2019  –  2030  ($  Million)
  Figure  37:  Global  LTE  SON  Revenue:  2019  –  2030  ($  Million)
  Figure  38:  Global  5G  SON  Revenue:  2020  -  2030  ($  Million)
  Figure  39:  Global  Wi-Fi  &  Other  Access  Technology  SON  Revenue:  2019  –  2030  ($  Million)
  Figure  40:  SON  Revenue  by  Region:  2019  –  2030  ($  Million)
  Figure  41:  Global  Conventional  Mobile  Network  Planning  &  Optimization  Revenue:  2019  –  2030  ($  Million)
  Figure  42:  Conventional  Mobile  Network  Planning  &  Optimization  Revenue  by  Region:  2019  –  2030  ($  Million)
  Figure  43:  Asia  Pacific  SON  Revenue:  2019  –  2030  ($  Million)
  Figure  44:  Asia  Pacific  Conventional  Mobile  Network  Planning  &  Optimization  Revenue:  2019  –  2030  ($  Million)
  Figure  45:  Eastern  Europe  SON  Revenue:  2019  –  2030  ($  Million)
  Figure  46:  Eastern  Europe  Conventional  Mobile  Network  Planning  &  Optimization  Revenue:  2019  –  2030  ($  Million)
  Figure  47:  Latin  &  Central  America  SON  Revenue:  2019  –  2030  ($  Million)
  Figure  48:  Latin  &  Central  America  Conventional  Mobile  Network  Planning  &  Optimization  Revenue:  2019  –  2030  ($  Million)
  Figure  49:  Middle  East  &  Africa  SON  Revenue:  2019  –  2030  ($  Million)
  Figure  50:  Middle  East  &  Africa  Conventional  Mobile  Network  Planning  &  Optimization  Revenue:  2019  –  2030  ($  Million)
  Figure  51:  North  America  SON  Revenue:  2019  –  2030  ($  Million)
  Figure  52:  North  America  Conventional  Mobile  Network  Planning  &  Optimization  Revenue:  2019  –  2030  ($  Million)
  Figure  53:  Western  Europe  SON  Revenue:  2019  –  2030  ($  Million)
  Figure  54:  Western  Europe  Conventional  Mobile  Network  Planning  &  Optimization  Revenue:  2019  –  2030  ($  Million)
  Figure  55:  SON  Associated  OpEx  Savings  by  Region:  2019  –  2030  ($  Million)
Topics Covered
The report covers the following topics:
- SON ecosystem
- Market drivers and barriers
- Conventional mobile network planning & optimization
- Mobile network infrastructure spending, traffic projections and value chain
- SON technology, architecture & functional areas
- Review of over 30 SON use cases – ranging from automated neighbor relations and parameter optimization to self-protection and cognitive networks
- Case studies of 15 commercial SON deployments by mobile operators
- Complementary technologies including Big Data, advanced analytics, artificial intelligence and machine learning
- Key trends in next-generation LTE and 5G SON implementations including network slicing, dynamic spectrum management, edge computing, virtualization and zero-touch automation
- Regulatory landscape, collaborative initiatives and standardization
- SON future roadmap: 2019 – 2030
- Profiles and strategies of more than 160 leading ecosystem players including wireless network infrastructure OEMs, SON solution providers and mobile operators
- Strategic recommendations for SON solution providers and mobile operators
- Market analysis and forecasts from 2019 till 2030

Forecast Segmentation
Market forecasts are provided for each of the following submarkets and their subcategories:

Mobile Network Optimization
- SON
- Conventional Mobile Network Planning & Optimization

SON Network Segment Submarkets
- RAN (Radio Access Network)
- Mobile Core
- Transport (Backhaul & Fronthaul)

SON Architecture Submarkets
- C-SON (Centralized SON)
- D-SON (Distributed SON)
- SON Access Network Technology Submarkets
- 2G & 3G
- LTE
- 5G
- Wi-Fi & Others

Regional Markets
- Asia Pacific
- Eastern Europe
- Latin & Central America
- Middle East & Africa
- North America
- Western Europe

Key Questions Answered
The report provides answers to the following key questions:
- How big is the SON opportunity?
- What trends, challenges and barriers are influencing its growth?
- How is the ecosystem evolving by segment and region?
- What will the market size be in 2022, and at what rate will it grow?
- Which regions and countries will see the highest percentage of growth?
- How do SON investments compare with spending on traditional mobile network optimization?
- What are the practical, quantifiable benefits of SON – based on live, commercial deployments?
- How can mobile operators capitalize on SON to ensure optimal network performance, improve customer experience, reduce costs, and drive revenue growth?
- What is the status of C-SON and D-SON adoption worldwide?
- What are the prospects of artificial intelligence in SON and mobile network automation?
- What opportunities exist for SON in mobile core and transport networks?
- How can SON ease the deployment of unlicensed and private LTE/5G-ready networks?
- What SON capabilities will 5G networks entail?
- How does SON impact mobile network optimization engineers?
- What is the global and regional outlook for SON associated OpEx savings?
- Who are the key ecosystem players, and what are their strategies?
- What strategies should SON solution providers and mobile operators adopt to remain competitive?

Key Findings
The report has the following key findings:
- Largely driven by the increasing complexity of today's multi-RAN mobile networks – including network densification and spectrum heterogeneity, as well as 5G NR (New Radio) infrastructure rollouts, global investments in SON technology are expected to grow at a CAGR of approximately 11% between 2019 and 2022. By the end of 2022, SNS Telecom & IT estimates that SON will account for a market worth $5.5 Billion.
- Based on feedback from mobile operators worldwide, the growing adoption of SON technology has brought about a host of practical benefits for early adopters – ranging from more than a 50% decline in dropped calls and reduction in network congestion during special events by a staggering 80% to OpEx savings of more than 30% and an increase in service revenue by 5-10%.
- In addition, SON mechanisms are playing a pivotal role in accelerating the adoption of 5G networks – through the enablement of advanced capabilities such as network slicing, dynamic spectrum management, predictive resource allocation, and the automated of deployment of virtualized 5G network functions.
- To better address network performance challenges amidst increasing complexity, C-SON platforms are leveraging an array of complementary technologies – from artificial intelligence and machine learning algorithms to Big Data technologies and the use of alternative data such as information extracted from crowd-sourcing tools.
- In addition to infrastructure vendor and third-party offerings, mobile operator developed SON solutions are also beginning to emerge. For example, Elisa has developed a SON platform based on closed-loop automation and customizable algorithms for dynamic network optimization. Through a dedicated business unit, the Finnish operator offers its in-house SON implementation as a commercial product to other mobile operators.
 Feel free to contact us

 
Choose License Type
Select User Type


Report code




x

Use Code

SDMR20

Purchase any report

AVAIL FLAT DISCOUNT